Assessment of Machine Learning Reliability Methods for Quantifying the Applicability Domain of QSAR Regression Models
نویسندگان
چکیده
The vastness of chemical space and the relatively small coverage by experimental data recording molecular properties require us to identify subspaces, or domains, for which we can confidently apply QSAR models. The prediction of QSAR models in these domains is reliable, and potential subsequent investigations of such compounds would find that the predictions closely match the experimental values. Standard approaches in QSAR assume that predictions are more reliable for compounds that are "similar" to those in subspaces with denser experimental data. Here, we report on a study of an alternative set of techniques recently proposed in the machine learning community. These methods quantify prediction confidence through estimation of the prediction error at the point of interest. Our study includes 20 public QSAR data sets with continuous response and assesses the quality of 10 reliability scoring methods by observing their correlation with prediction error. We show that these new alternative approaches can outperform standard reliability scores that rely only on similarity to compounds in the training set. The results also indicate that the quality of reliability scoring methods is sensitive to data set characteristics and to the regression method used in QSAR. We demonstrate that at the cost of increased computational complexity these dependencies can be leveraged by integration of scores from various reliability estimation approaches. The reliability estimation techniques described in this paper have been implemented in an open source add-on package ( https://bitbucket.org/biolab/orange-reliability ) to the Orange data mining suite.
منابع مشابه
QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer
The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...
متن کاملQSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer
The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...
متن کاملEstimation of the applicability domain of kernel-based machine learning models for virtual screening
BACKGROUND The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space ...
متن کاملQSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...
متن کاملQSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2014